Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Günter Margraf, ${ }^{\text {a * }}$
Hans-Wolfram Lerner, ${ }^{\text {a }}$ Matthias Wagner a and Michael Bolte ${ }^{b}$
${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.080$
Data-to-parameter ratio $=35.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The absolute structure of tetrakis(trimethylphosphine)copper(I) dichlorocopper(I)

Received 8 January 2004 Accepted 12 January 2004 Online 17 January 2004

Comment

Recently, we reported the X-ray crystal structure analyses of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$ (Margraf et al., 2003). In the solid state, both compounds feature linear two coordinated copper(I) fragments with short copper(I)-copper(I) contacts. Now, we are interested in the syntheses and solid-state characterizations of new Cu^{I} complexes with sterically more demanding ligands, such as ${ }^{t} \mathrm{Bu}_{3} \mathrm{SiPH}_{2}$ and ${ }^{t} \mathrm{Bu}_{2} \mathrm{PhSiPH}_{2}$. Therefore, we have prepared the title compound, (I), as a starting material.

The structure of (I) was previously reported by Chi et al. (1992). The geometric parameters of both determinations agree quite well, but the present work is of significantly improved precision. Furthermore, our data indicate that the absolute structure is different from that reported by Chi et al. (1992). A perspective view of (I) is shown in Fig. 1. The Cu and Cl atoms and one of the P atoms are located on a threefold rotation axis. As a result, there is just one third of both ions in the asymmetric unit.

The different absolute structure of the title compound does not show that the previous result was wrong; presumably there is spontaneous resolution on crystallization, and the choice of a particular handedness for the crystal studied is arbitrary. This might demonstrate that an achiral compound can crystallize in both enantiomers.

Experimental

The title compound was synthesized by dropwise addition of $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ ($152 \mathrm{mg}, 2 \mathrm{mmol}$) to $\mathrm{CuCl}(99 \mathrm{mg}, 1 \mathrm{mmol})$ in THF. Colourless single crystals were obtained by storing the THF solution at ambient temperature.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}_{4}\right)_{4}\right]\left[\mathrm{CuCl}_{2}\right]$
$M_{r}=502.27$
Cubic, $P 2_{1} 3$
$a=13.4832(11) \AA$
$V=2451.2(3) \AA^{3}$
$Z=4$
$D_{x}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.380, T_{\text {max }}=0.521$
Cell parameters from 5949
reflections
$\theta=3.8-31.3^{\circ}$
$\mu=2.21 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

4186 measured reflections

Refinement

Refinement on F^{2}
Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.080$
$S=1.05$
2172 reflections
61 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0565 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
686 Friedel pairs
Flack parameter $=-0.012(14)$

All H atoms were located in a difference Fourier synthesis. They were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.5 U_{\text {eq }}(\mathrm{C})$] using a riding model with $\mathrm{C}-\mathrm{H}_{\text {methyl }}=0.98 \AA$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are the 50% probability level. Atoms marked with suffixes A and B are related to those with no suffixes by the symmetry codes (z, x, y) and (y, z, x), respectively. H atoms have been omitted.

Chi, K. M., Farkas, J., Hampden-Smith, M. J., Kodas, T. T. \& Duesler, E. N. (1992). J. Chem. Soc. Dalton Trans. pp. 3111-3117.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Margraf, G., Bats, J. W., Bolte, M., Lerner, H. W. \& Wagner, M. (2003). J. Chem. Soc. Chem. Commun. pp. 956-957.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXLTL-Plus. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe and Cie, Darmstadt, Germany.

